語言 :
SWEWE 會員 :登錄 |註冊
搜索
百科社區 |百科問答 |提交問題 |詞彙知識 |上傳知識
上一頁 2 下一頁 選擇頁數

布朗運動

流動的根源

在維納之後,S·埃克斯納也測定了微粒的移動速度。他提出布朗運動是由於微觀範圍的流動造成的,他沒有說明這種流動的根源,但他看到在加熱和光照使液體粘度降低時,微粒的運動加劇了。就這樣,維納和S·埃克斯納都把布朗運動歸結為物係自身的性質。這一時期還有康托尼,他試圖在熱力理論的基礎上解釋布朗運動,認為微粒可以看成是巨大分子,它們與液體介質處於熱平衡,它們與液體的相對運動起源於滲透作用和它們與周圍液體之間的相互作用。撞擊微粒的結果

到了70——80年代,一些學者明確地把布朗運動歸結為液體分子撞擊微粒的結果,這些學者有卡蓬內爾、德爾索和梯瑞昂,還有耐格里。植物學家耐格里(1879)從真菌、細菌等通過空氣傳播的現象,認為這些微粒即使在靜止的空氣中也可以不沉。聯繫到物理學中氣體分子以很高速度向各方向運動的結論,他推測在陽光下看到的飛舞的塵埃是氣體分子從各方向撞擊的結果。他說:“這些微小塵埃就像彈性球一樣被擲來擲去,結果如同分子​​本身一樣能保持長久的懸浮。”不過耐格里又放棄了這一可能達到正確解釋的途徑,他計算了單個氣體分子和塵埃微粒發生彈性碰撞時微粒的速度,結果要比實際觀察到的小許多數量級,於是他認為由於氣體分子運動的無規則性,它們共同作用的結果不能使微粒達到觀察速度值,而在液體中則由於介質和微粒的摩擦阻力和分子間的粘附力,分子運動的設想不能成為合適的解釋。

解決難題

1874——1880年間,卡蓬內爾、德耳索和梯瑞昂的工作解決了耐格里遇到的難題。這裡的關鍵是他們認為由於分子運動的無規則性和分子速度有一分佈,在液體或氣體中的微觀尺度上存在密度和壓力的漲落。這種漲落在宏觀尺度上抵消掉了。但是如果壓方面足夠微小,這種不均勻性就不能抵消,液體中的相應的擾動就能表現出來。因此懸浮在液體中的微粒只要足夠小,就會不停地振盪下去。卡蓬內爾明確地指出唯一影響此效應的因素是微粒的大小,不過他把這種運動主要看成振盪,而德耳索根據克勞修斯把分子運動歸結為平動和轉動的觀點,認為微粒的運動是無規則位移,這是德耳索的主要貢獻。

實驗觀察

此後,古伊在1888——1895年期間對布朗運動進行過大量的實驗觀察。古伊對分子行為的描述並不比卡蓬內爾等人高明,他也沒有弄清漲落的見解。不過他的特別之處是他強調的不是對布朗運動的物理解釋,而是把布朗運動作為探究分子運動性質的一個工具。他說:“布朗運動表明,並不是分子的運動,而是從分子運動導出的一些結果能向我們提供直接的和可見的證據,說明對熱本質假設的正確性。按照這樣的觀點,這一現象的研究承擔了對分子物理學的重要作用。”古伊的文獻產生過重要的影響,所以後來貝蘭把布朗運動正確解釋的來源歸功於古伊。

研究工作

到了1900年,F·埃克斯納完成了布朗運動前期研究的最後工作。他用了許多懸濁液進行了和他的父親S·埃克斯納30年前作過的同類研究。他測定了微粒在1min內的位移,與前人一樣,證實了微粒的速度隨粒度增大而降低,隨溫度升高而增加。他清楚地認識到微粒作為巨大分子加入了液體分子的熱運動,指出從這一觀點出發“就可以得出微粒的動能和溫度之間的關係。”他說:“這種可見的運動及其測定值對我們清楚了解液體內部的運動會有進一步的價值”。

研究的基本情況

以上是1900年前對布朗運動研究的基本情況。自然,這些研究與分子運動論的建立是密切相關的。由麥克斯威和玻爾茲曼在60——70年代建立的氣體分子運動論在概念上的一個重大發展是拋棄了對單個分子進行詳細跟踪的方法,而代之以對大量分子的統計處理,這為弄清布朗運動的根源打下了基礎。與布朗運動的研究有密切關係的還有在60年代由格雷哈姆建立的膠體科學。所謂膠體是由粒度介於宏觀粒子和微觀分子之間的微粒形成的分散體系,布朗運動正是膠體粒子在液體介質中表現的運動。

對於布朗運動的研究,1900年是個重要的分界線。至此,布朗運動的適當的物理模型已經顯明,剩下的問題是需要作出定量的理論描述了。

愛因斯坦

1905年,愛因斯坦依據分子運動論的原理提出了布朗運動的理論。就在差不多同時,斯莫盧霍夫斯基也作出了同樣的成果。他們的理論圓滿地回答了布朗運動的本質問題。

應該指出,愛因斯坦從事這一工作的歷史背景是那時科學界關於分子真實性的爭論。這種爭論由來已久,從原子分子理論產生以來就一直存在。本世紀初,以物理學家和哲學家馬赫和化學家奧斯特瓦爾德為代表的一些人再次提出對原子分子理論的非難,他們從實證論或唯能論的觀點出發,懷疑原子和分子的真實性,使得這一爭論成為科學前沿中的一個中心問題。要回答這一問題,除開哲學上的分歧之外,就科學本身來說,就需要提出更有力的證據,證明原子、分子的真實存在。比如以往測定的相對原子質量和相對分子質量只是質量的相對比較值,如果它們是真實存在的,就能夠而且也必須測得相對原子質量和相對分子質量的絕對值,這類問題需要人們回答。

由於上述情況,象愛因斯坦在論文中指出的那樣,他的目的是“要找到能證實確實存在有一定大小的原子的最有說服力的事實。”他說:“按照熱的分子運動論,由於熱的分子運動,大小可以用顯微鏡看見的物體懸浮在液體中,必定會發生其大小可以用顯微鏡容易觀測到的運動。可能這裡所討論的運動就是所謂'布朗分子運動'”。他認為只要能實際觀測到這種運動和預期的規律性,“精確測定原子的實際大小就成為可能了”。 “反之,要是關於這種運動的預言證明是不正確的,那麼就提供了一個有份量的證據來反對熱分子運動觀”。

原理推導

愛因斯坦的成果大體上可分兩方面。一是根據分子熱運動原理推導:在t時間裡,微粒在某一方向上位移的統計平均值,即方均根值,D是微粒的擴散係數。這一公式是看來毫無規則的布朗運動服從分子熱運動規律的必然結果。

愛因斯坦成果的第二個方面是對於球形微粒,推導出了可以求算阿式中的η是介質粘度,a是微粒半徑,R是氣體常數,NA為阿伏加德羅常數。按此公式,只要實際測得準確的擴散係數D或布朗運動均方位移就可得到原子和分子的絕對質量。愛因斯坦曾用前人測定的糖在水中的擴散係數,估算的NA值為3.3×10^23,一年後(1906),又修改為6.56×10^23。

真實性

愛因斯坦的理論成果為證實分子的真實性找到了一種方法,同時也圓滿地闡明了布朗運動的根源及其規律性。下面的工作就是要用充足的實驗來檢驗這一理論的可靠性。愛因斯坦說:“我不想在這裡把可供我使用的那些稀少的實驗資料去同這理論的結果進行比較,而把它讓給實驗方面掌握這一問題的那些人去做”。 “但願有一位研究者能夠立即成功地解決這裡所提出的、對熱理論關係重大的這個問題!”愛因斯坦提出的這一任務不久之後就由貝蘭(1870——1942)和斯維德伯格分別出色的完成了。這裡還應該提到本世紀初在研究布朗運動方面一個重大的實驗​​進展是1902年齊格蒙第(1865——1929)發明了超顯微鏡,用它可直接看到和測定膠體粒子的布朗運動,這也就是證實了膠體粒子的真實性,為此,齊格蒙第曾獲1925年諾貝爾化學獎。斯維德伯格測定布朗運動就是用超顯微鏡進行的。

貝蘭實驗

1908到1913年期間,貝蘭進行了驗證愛因斯坦理論和測定阿伏加德羅常數的實驗研究。他的工作包括好幾方面。在初期,他的想法是,既然在液體中進行布朗運動的微粒可以看成是進行熱運動的巨大分子,它們就應該遵循分子運動的規律,因此只要找到微粒的一種可用實驗觀測的性質,這種性質與氣體定律在邏輯上是等效的,就可以用來測定阿伏加德羅常數。 1908年,他想到液體中的懸浮微粒相當於“可見分子的微型大氣”,所以微粒濃度(單位體積中的數目)的高度分佈公式應與氣壓方程有相同的形式,只是對粒子受到的浮力應加以校正。這一公式是:ln(n/n0)=-mgh(1-ρ/ρ0)/kt。式中k是波爾茲曼常數,自k和NA的關係,公式也可寫成ln(n/n0)=-NA mgh(1-ρ/ρ0)/RT。根據此公式,從實驗測定的粒子濃度的高度分佈數據就可以計算k和NA。

為進行這種實驗,先要製得合用的微粒。製備方法是先向樹脂的酒精溶液中加入大量水,則樹脂析出成各種尺寸的小球,然後用沉降分離的方法多次分級,就可以得到大小均勻的級份(例如直徑約3/4μm的藤黃球)。用一些精細的方法測定小球的直徑和密度。下一步是測定懸浮液中小球的高度分佈,是將懸浮液裝在透明和密閉的盤中,用顯微鏡觀察,待沉降達到平衡後,測定不同高度上的粒子濃度。可以用快速照相,然後計數。測得高度分佈數據,即可計算NA。貝蘭及其同事改變各種實驗條件:材料(藤黃、乳香),粒子質量(從1到50),密度(1.20到1.06),介質(水,濃糖水,甘油)和溫度(-90°到60°),得到的NA值是6.8×10^23。

直接證明

貝蘭的另一種實驗是測量布朗運動,可以說這是對分子熱運動理論的更直接證明。根據前述的愛因斯坦對球形粒子導出的公式,只要實驗液,在選定的一段時間內用顯微鏡觀察粒子的水平投影,測得許多位移數值,再進行統計平均。貝蘭改變各種實驗條件,得到的NA值是(5.5-7.2)×10。貝蘭還用過一些其它方法,用各種方法得到的NA值是:

6.5×10 用類似氣體懸浮液分佈法,

6.2×10 用類似液體懸浮液分佈法,

6.0×10 測定濃懸浮液中的騷動,


上一頁 2 下一頁 選擇頁數
用戶 評論
還沒有評論
我要評論 [遊客 (3.17.*.*) | 登錄 ]

語言 :
| 校驗代碼 :


搜索

版权申明 | 隐私权政策 | 版權 @2018 世界百科知識