語言 :
SWEWE 會員 :登錄 |註冊
搜索
百科社區 |百科問答 |提交問題 |詞彙知識 |上傳知識
上一頁 1 下一頁 選擇頁數

遺傳密碼

遺傳密碼決定蛋白質中氨基酸順序的核苷酸順序,由3個連續的核苷酸組成的密碼子所構成。由於脫氧核糖核酸(DNA)雙鏈中一般只有一條單鏈(稱為有義鍊或編碼鏈)被轉錄為信使核糖核酸(mRNA),而另一條單鏈(稱為反義鏈)則不被轉錄,所以即使對於以雙鏈DNA作為遺傳物質的生物來講,密碼也用核糖核酸(RNA)中的核苷酸順序而不用DNA中的脫氧核苷酸順序表示。概念

英文名:geneticcodon

遺傳密碼又稱密碼子、遺傳密碼子、三聯體密碼。指信使RNA(mRNA)分子上從5'端到3'端方向,由起始密碼子AUG開始,每三個核苷酸組成的三聯體。它決定肽鏈上每一個氨基酸和各氨基酸的合成順序,以及蛋白質合成的起始、延伸和終止。

遺傳密碼是一組規則,將DNA或RNA序列以三個核苷酸為一組的密碼子轉譯為蛋白質的氨基酸序列,以用於蛋白質合成。幾乎所有的生物都使用同樣的遺傳密碼,稱為標準遺傳密碼;即使是非細胞結構的病毒,它們也是使用標準遺傳密碼。但是也有少數生物使用一些稍微不同的遺傳密碼。

特點

方向性

密碼子是對mRNA分子的鹼基序列而言的,它的閱讀方向是與mRNA的合成方向或mRNA編碼方向一致的,即從5'端至3'端。 [1]

連續性

mRNA的讀碼方向從5'端至3'端方向,兩個密碼子之間無任何核苷酸隔開。 mRNA鏈上鹼基的插入、缺失和重疊,均造成移框突變。

簡併性

指一個氨基酸具有兩個或兩個以上的密碼子。密碼子的第三位鹼基改變往往不影響氨基酸翻譯。

擺動性

mRNA上的密碼子與轉移RNA(tRNA)J上的反密碼子配對辨認時,大多數情況遵守鹼基互補配對原則,但也可出現不嚴格配對,尤其是密碼子的第三位鹼基與反密碼子的第一位鹼基配對時常出現不嚴格鹼基互補,這種現象稱為擺動配對。

通用性

蛋白質生物合成的整套密碼,從原核生物到人類都通用。但已發現少數例外,如動物細胞的線粒體、植物細胞的葉綠體。

破解歷史

遺傳密碼的發現是20世紀50年代的一項奇妙想像和嚴密論證的偉大結晶。 mRNA由四種含有不同鹼基腺嘌呤(簡稱A)、尿嘧啶(簡稱U)、胞嘧啶(簡稱C)、鳥嘌呤(簡稱G)的核苷酸組成。最初科學家猜想,一個鹼基決定一種氨基酸,那就只能決定四種氨基酸,顯然不夠決定生物體內的二十種氨基酸。那麼二個鹼基結合在一起,決定一個氨基酸,就可決定十六種氨基酸,顯然還是不夠。如果三個鹼基組合在一起決定一個氨基酸,則有六十四種組合方式,看來三個鹼基的三聯體就可以滿足二十種氨基酸的表示了,而且還有富餘。猜想畢竟是猜想,還要嚴密論證才行。

自從發現了DNA的結構,科學家便開始致力研究有關製造蛋白質的秘密。伽莫夫指出需要以三個核酸一組才能為20個氨基酸編碼。 1961年,美國國家衛生院的Matthaei與馬歇爾·沃倫·尼倫伯格在無細胞系統(Cell-free system)環境下,把一條只由尿嘧啶(U)組成的RNA轉釋成一條只有苯丙氨酸(Phe)的多肽,由此破解了首個密碼子(UUU -> Phe)。隨後哈爾·葛賓·科拉納破解了其它密碼子,接著羅伯特·W·霍利發現了負責轉錄過程的tRNA。 1968年,科拉納、霍利和尼倫伯格分享了諾貝爾生理學或醫學獎。

閱讀方式

破譯遺傳密碼,必須了解閱讀密碼的方式。遺傳密碼的閱讀,可能有兩種方式:一種是重疊閱讀,一種是非重疊閱讀。例如mRNA上的鹼基排列是AUGCUACCG。若非重疊閱讀為AUG、CUA、CCG、;若重疊閱讀為AUG、UGC、GCU、CUA、UAC、A​​CC、CCG。兩種不同的閱讀方式,會產生不同的氨基酸排列。克里克用T噬菌體為實驗材料,研究基因的鹼基增加或減少對其編碼的蛋白質會有什麼影響。克里克發現,在編碼區增加或刪除一個鹼基,便無法產生正常功能的蛋白質;增加或刪除兩個鹼基,也無法產生正常功能的蛋白質。但是當增加或刪除三個鹼基時,卻合成了具有正常功能的蛋白質。這樣克里克通過實驗證明了遺傳密碼中三個鹼基編碼一個氨基酸,閱讀密碼的方式是從一個固定的起點開始,以非重疊的方式進行,編碼之間沒有分隔符。

驗證猜想

1959年三聯體密碼的猜想終於被尼倫伯格(Nirenberg Marshall Warren)等人用“體外無細胞體系”的實驗證實。尼倫伯格等人的實驗用人工製成的只含一種核苷酸的mRNA作模板,提供核醣體、ATP、全套蛋白翻譯所必需的酶系統和二十種氨基酸單體等等作為原料,在合適的條件下接著觀察這已知的核苷酸組成的mRNA翻譯出的多肽鏈。結果發現形成一條多個氨基酸組成的肽鏈。從而表明mRNA上的鹼基決定氨基酸。此外實驗同時也證明了mRNA上的密碼是奇數的三聯體,因為只有奇數的三聯體才能形成交互的二個密碼。

破譯方法

尼倫伯格等發現由三個核苷酸構成的微mRNA能促進相應的氨基酸-tRNA和核醣體結合。但微mRNA不能合成多肽,因此不一定可靠。科蘭納(Khorana,Har Gobind)用已知組成的兩個、三個或四個一組的核苷酸順序人工合成mRNA,在細胞外的轉譯系統中加入放射性標記的氨基酸,然後分析合成的多肽中氨基酸的組成。

通過比較,找出實驗中三聯碼相同的部分,再找出多肽中相同的氨基酸,於是可確定該三聯碼就為該氨基酸的遺傳密碼。科蘭納用此方法破譯了全部遺傳密碼,從而和尼倫伯格分別獲得1968年諾貝爾獎金。

後來,尼倫伯格等用多種不同的人工mRNA進行實驗,觀察所得多肽鏈上的氨基酸的類別,再用統計方法推算出人工mRNA中三聯體密碼出現的頻率,分析與合成蛋白中各種氨基酸的頻率之間的相關性,以此方法也能找出20種氨基酸的全部遺傳密碼。最後,科學家們還用了由3個核苷酸組成的各種多核苷鏈來檢查相應的氨基酸,進一步證實了全部密碼子。

破解原理

DNA分子是由四種核苷酸的多聚體。這四種核苷酸的不同之處在於所含鹼基的不同,即A、T、C、G四種鹼基的不同。用A、T、C、G分別代表四種核苷酸,則DNA分子中將含有四種密碼符號。以一段DNA含有1000對核苷酸而言,這四種密碼的排列就可以有41000種形式,理論上可以表達出無限信息。

遺傳密碼


上一頁 1 下一頁 選擇頁數
用戶 評論
還沒有評論
我要評論 [遊客 (3.129.*.*) | 登錄 ]

語言 :
| 校驗代碼 :


搜索

版权申明 | 隐私权政策 | 版權 @2018 世界百科知識