語言 :
SWEWE 會員 :登錄 |註冊
搜索
百科社區 |百科問答 |提交問題 |詞彙知識 |上傳知識
上一頁 2 下一頁 選擇頁數

遺傳密碼

遺傳密碼(geneticcode)又是如何翻譯的呢?首先是以DNA的一條鍊為模板合成與它互補的mRNA,根據鹼基互補配對原則在這條mRNA鏈上,A變為U,T變為A,C變為G,G變為C。因此,這條mRNA上的遺傳密碼與原來模板DNA的互補DNA鍊是一樣的,所不同的只是U代替了T。然後再由mRNA上的遺傳密碼翻譯成多肽鏈中的氨基酸序列。鹼基與氨基酸兩者之間的密碼關係,顯然不可能是1個鹼基決定1個氨基酸。因此,一個鹼基的密碼子(codon)是不能成立的。如果是兩個鹼基決定1個氨基酸,那麼兩個鹼基的密碼子可能的組合將是42=16。這種比現存的20種氨基酸還差4種因此不敷應用。如果每三個鹼基決定一個氨基酸,三聯體密碼可能的組合將是43=64種。這比20種氨基酸多出44種,所以會產生多餘密碼子。可以認為是由於每個特定的氨基酸是由1個或多個的三聯體(triplet)密碼決定的。一個氨基酸由一個以上的三聯體密碼子所決定的現象,稱為簡併(degeneracy)。每種三聯體密碼決定什麼氨基酸呢?從1961年開始,經過大量的實驗,分別利用64個已知三聯體密碼,找出了與他們對應的氨基酸。 1966-1967年,全部完成了這套遺傳密碼的字典。大多數氨基酸都有幾個三聯體密碼,多則6個,少則2個,這就是上面提到過的簡併現象。只有色氨酸與甲硫氨酸這兩種氨基酸例外,只有1個三聯體密碼。此外,還有3個三聯體密碼UAA、UAG和UGA不編碼任何氨基酸,它們是蛋白質合成的終止信號。三聯體密碼AUG在原核生物中編碼甲酰化甲硫氨酸,在真核生物中編碼甲硫氨酸,並起合成起點作用。 GUG編碼結氨酸,在某些生物中也兼有合成起點作用。分析簡併現象時可以看到,當三聯體密碼的第一個、第二個鹼基決定之後,有時不管第三個鹼基是什麼,都可能決定同一個氨基酸。例如,脯氨酸是由下列四個三聯體密碼決定的:CCU、CCC、CCA、CCG。也就是說,在一個三聯體密碼上,第一個,第二個鹼基比第三個鹼基更為重要,這就是產生簡併現象的基礎。

同義的密碼子越多,生物遺傳的穩定性越大。因為當DNA分子上的鹼基發生變化時,突變後所形成的三聯體密碼,可能與原來的三聯體密碼翻譯成同樣的氨基酸,或者化學性質相近的氨基酸,在多肽鏈上就不會表現任何變異或者變化不明顯。因而簡併現像對生物遺傳的穩定性具有重要意義。

歷史起源

除了少數的不同之外,地球上已知生物的遺傳密碼均非常接近;因此根據演化論​​,遺傳密碼應在生命歷史中很早期就出現。現有的證據表明遺傳密碼的設定並非是隨機的結果,對此有以下的可能解釋:

最近一項研究顯示,一些氨基酸與它們相對應的密碼子有選擇性的化學結合力,這顯示現在復雜的蛋白質製造過程可能並非一早存在,最初的蛋白質可能是直接在核酸上形成。

原始的遺傳密碼可能比今天簡單得多,隨著生命演化製造出新的氨基酸再被利用而令遺傳密碼變得複雜。雖然不少證據證明這觀點3,但詳細的演化過程仍在探索之中。

經過自然選擇,現時的遺傳密碼減低了突變造成的不良影響。

密碼子表

[2]此表列出了64種密碼子以及氨基酸的標準配對。

1994年版曾邦哲著《結構論》中對密碼子和氨基酸的組合數學計算公式[3]為:C1/4 2C2/4 C3/4=20氨基酸,C1/4 6(C2/4 C3 /4)=64密碼子。

-

-

第二位鹼基

第二位鹼基

第二位鹼基

第二位鹼基

-

-

U

C

A

G











U

UUU (Phe/F)苯丙氨酸


上一頁 2 下一頁 選擇頁數
用戶 評論
還沒有評論
我要評論 [遊客 (3.21.*.*) | 登錄 ]

語言 :
| 校驗代碼 :


搜索

版权申明 | 隐私权政策 | 版權 @2018 世界百科知識